这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答
法律顾问专家

这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答

时间:2023-05-09 来源:

通过探索找到最优提示词模板,预留特定槽位以供用户输入。仅通过提示词优化就能实现广泛功能,许多基于GPT的产品,其底层就是基于特定提示词的包装。好的提示词需包含角色、背景、GPT需执行的任务、输出标准等。根据业界的研究,好的提示词能使GPT3.5结果的可用性由30%飙升至80%以上。提示词优化毫无疑问是这三种方法中最重要的。

② embedding

这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答。

③ 微调(finetune)

通过输入大量问答,真正教会GPT如何回答某类问题,成本较前两者更高。优势在于将提示词的短期记忆转化为私有模型的长期记忆,从而释放宝贵的Token以完善提示词其他细节。

以上三种方式并不冲突,在工程实践中往往互相配合,特别是前两种。

3. 私有数据积累

私有数据集的价值得到进一步提升,各行业可基于此对GPT进行二次包装,解决特定领域问题。建议使用微软Azure提供的GPT接口,搭建带有私有数据的大语言模型产品。因微软面向B端的GPT服务为独立部署,不会将私有数据用于大模型训练,这样可以有效保护私有数据。毕竟私有数据一旦公开,价值将大打折扣。

凭借以上几项能力加持,大语言模型可以充分释放在解决依赖电脑的重复性劳动的生产力。我将下一个时代的业务运转模式总结如下图:


全国统一热线

4000-163-301

联系在线客服
这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答 最新资讯 这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答 相关资讯

这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答

时间:2023-05-09 来源:

通过探索找到最优提示词模板,预留特定槽位以供用户输入。仅通过提示词优化就能实现广泛功能,许多基于GPT的产品,其底层就是基于特定提示词的包装。好的提示词需包含角色、背景、GPT需执行的任务、输出标准等。根据业界的研究,好的提示词能使GPT3.5结果的可用性由30%飙升至80%以上。提示词优化毫无疑问是这三种方法中最重要的。

② embedding

这是一种搭建自有知识库的方法,将自建知识库使用embedding技术向量化,这样GPT就能基于自有数据进行问答。

③ 微调(finetune)

通过输入大量问答,真正教会GPT如何回答某类问题,成本较前两者更高。优势在于将提示词的短期记忆转化为私有模型的长期记忆,从而释放宝贵的Token以完善提示词其他细节。

以上三种方式并不冲突,在工程实践中往往互相配合,特别是前两种。

3. 私有数据积累

私有数据集的价值得到进一步提升,各行业可基于此对GPT进行二次包装,解决特定领域问题。建议使用微软Azure提供的GPT接口,搭建带有私有数据的大语言模型产品。因微软面向B端的GPT服务为独立部署,不会将私有数据用于大模型训练,这样可以有效保护私有数据。毕竟私有数据一旦公开,价值将大打折扣。

凭借以上几项能力加持,大语言模型可以充分释放在解决依赖电脑的重复性劳动的生产力。我将下一个时代的业务运转模式总结如下图:


企业法律顾问律师顾问公司法律顾问法务顾问常年法律顾问

立即联系